|
2r 2r |- |bgcolor=#e7dcc3|Coxeter-Dynkin diagrams|| |- |bgcolor=#e7dcc3|4-face type|| 40px |- |bgcolor=#e7dcc3|Cell type|| 20px |- |bgcolor=#e7dcc3|Face type|| |- |bgcolor=#e7dcc3|Edge figure|| |- |bgcolor=#e7dcc3|Vertex figure|| |- |bgcolor=#e7dcc3|Dual|| |- |bgcolor=#e7dcc3|Coxeter groups||, () , () |- |bgcolor=#e7dcc3|Properties||regular |} In four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular space-filling tessellation (or honeycomb) of 4-dimensional Euclidean space by regular 24-cells. It can be represented by Schläfli symbol . The dual tessellation by regular 16-cell honeycomb has Schläfli symbol . Together with the tesseractic honeycomb (or 4-cubic honeycomb) these are the only regular tessellations of Euclidean 4-space. == Kissing number == If a 3-sphere is inscribed in each hypercell of this tessellation, the resulting arrangement is the densest possible regular sphere packing in four dimensions, with the kissing number 24. The packing density of this arrangement is : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「24-cell honeycomb」の詳細全文を読む スポンサード リンク
|